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INFLUENCE OF PHASE TRANSITIONS ON SOUND PROPAGATION IN FOGS: 

COMPARISON OF THEORY WITH EXPERIMENT 

D. A. Gubaidullin and A. I. Ivandaev UDC 532.529:534.2 

Several theoretical and experimental papers [i-i0] have been devoted to the propagation 
of acoustic disturbances in two-component mixtures of a gas with vapor and liquid droplets. 
Here we give a brief survey of the latest theoretical publications. We discuss the exist- 
ing experimental data. We also compare the theory developed in [g] with the experimental 
data of other authors. 

i. The work of Cole and others [2, 4, 5] can evidently be cited among the earliest 
theoretical studies of the propagation of low-intensity waves in two-component two-phase 
mixtures of an inert gas with a vapor and liquid droplets in the presence of mass transfer 
by diffusion. These authors investigated the case of small mass contents of the condensed 
phase, m r i. It was established [2, 5] that the first maximum of the attenuation per 
wavelength o in aerosols with phase transitions occurs at m~v ~ m (m is the angluar frequen- 
cy, and ~v is the Stokes relaxation time of the phase velocities; see Sec. 3 below), i.e., 
at m~v ~ i. The attenuation coefficient in the vicinity of frequencies m~v ~ m is much 
greater than the corresponding values of o for aerosols without phase transitions. A pre- 
vious comparison [3] of theory with experiment indicated only qualitative agreement between 
them. 

Marble and Candel [6] investigated the feasibility of using a cloud of fine droplets 
to attenuate noise with the injection of liquid into the air intake of a turbojet engine. 
The magnitude of such attenuation is proportional to the vapor concentration k V in the gas- 

eous phase, but this rule does not hold for large values of k V. The shortcoming of [2, 4- 
6] lies in the failure to take into account the difference between the gas constants of 
the vapor and gas components in the equation of state for the host phase. It was actually 
assumed, therefore, that the gaseous phase is a calorically ideal gas when mass transfer 
is present in the disperse system. Allowance for the indicated difference in [7] improved 
the agreement between theory and the experimental data. However, this agreement still fell 
short. 

All of the cited investigations of sound propagation in vapor-gas-droplet systems were 
carried out within the framework of a quasiequilibrium phase transition scheme, where it is 
assumed that the temperature of the droplet surface during mass transfer is equal to the 
saturation temperature at the given partial pressure of the vapor. The transient effects 
of phase interaction are significant for high-frequency disturbances in the suspension; 
when they are taken into account, in general, the effects of nonequilibrium of the phase 
interface in phase transition are also taken into account. The influence of the sum total 
of transient and nonequilibrium effects of interphase mass, momentum, and energy transfer 
on the propagation of acoustic disturbances in mixtures of a gas with vapor and liquid drop- 
lets was first investigated by Gubaidullin and Ivandaev [g, i0]. They analyzed the individ- 
ual contributions of nonequilibrium interphase heat and mass transfer and friction of the 
phases to wave dispersion and dissipation. 

From the experimental point of view, the propagation of weak disturbances in gas sus- 
pensions has not been adequately studied to date. The majority of experimental studies 
have been concerned with sound propagation in suspensions without phase transitions. Accord- 
ingly, although the most important data are those pertaining to the influence of phase tran- 
sition on the dispersion relations, such data are very limited. 
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The first quantitative data on sound attenuation in a polydisperse atmospheric fog 
formed by the atomization of water in air were reported by Knudsen et al. [i]. The experi- 
ments were carried out for droplets with diameters up to 50 ~m, and the frequency of the dis- 
turbances was 500 Hz. However, phase transition was not observed to have any appreciable 
influence on sound propagation. This is because the characteristic time constant of inter- 
phase heat and mass transfer in the sonic irradiation of vapor-gas-droplet systems is ~m 

(T m ~ Tv/m; see Sec. 3 below). In the case of ordinary atmospheric fogs with a mass con- 

tent of the condensed phase m ~ 10 -3 to 10 -2 the time constant ~m is much smaller than the 
characteristic times in the absence of phase transitions. Consequently, the frequencies 
at which the influence of interphase heat and mass transfer on the attenuation and disper- 
sion of sound is a maximum (~m ~ i) can occur in the range of very low frequencies well 
below 500 Hz. The dimensionless frequency m~ m in the reported experiments [i] was much 

greater than unity (~T m m i). For this reason, the influence of phase transitions on the 

attenuation per wavelength o is inconsequential, and o differs very little from the corre- 
sponding value without mass transfer between phases. 

Sound attenuation measurements in a mixture of air with water vapor and droplets in 
the range of dimensionless frequencies ~m ~ 1 are reported in [3]. A Wilson cloud chamber 

was used in the experiments to generate a monodisperse fog with a mass content of droplets 
m ~ i0 -~. The diameter of the droplets in different tests varies from 2 ~m to I0 Dm, and 
the frequency of the disturbances was 80 Hz. The maximum attenuation per wavelength oc- 
curred at dimensionless frequencies w~ m ~ 1 (w~ v ~ m). Phase transition was observed to 

have strong effects on o: the maximum value of o was I00 times the value of o without phase 
transition. The sound velocity was not measured in the experiments of [i, 3]. 

2. We use the model of a two-velocity three-temperature continuum [ii] to study the 
phenomenon in the case of an acoustic homogeneity of the investigated monodisperse mixture. 
We write the linearized equations of planar one-dimensional motion in the presence of phase 
transitions. In a coordinate system wherein the undisturbed mixture is at rest, the equa- 
tions of conservation of mass, momentum, and energy of the phases have the form [9] 

t t / ~ I r 

0p 1 Ov 1 Opv Ov 1 Op~ 0 ~  
0--T + Plo ~ = - -  noJvz, " ~  + Pro ~ z  = - -  no jvz '  -~- + Pio ~-x = ( 2 . 1 )  

t t t t v 

Ou 1 aP l Ou 2 Oi v Oi G 
= no~z, p ~ o D y + - ~ +  n o / = 0 ,  P i o " ~ = n o / ,  9 v o ~ - + P G o - ~ / - =  

t v 

Op I Ou 2 
~1o - ~  - -  noqlz, P2o - ~  = - -  noq~z' qlz + qiz = - -  ]zlo, ]vz  = ]z, Plo 

o = t ,  4 ~a~no, P l o = P v o + P 6 o ~  P l o = P v o + P ~ o -  = %oP~o, P2o = a2oP~o, a~o + a2o a2o = - $  

Here p, p0, v, and p are the normalized and true densities, the velocity, and the pressure; 
a is the content by volume; n is the number of particles of radius a in unit volume; f is 
the force exerted on an individual droplet by the host phase; JVE is the diffusion flux of 

vapor toward the droplet surface E; and Jz is the rate of condensation on the droplet sur- 

face. The symbols i, u, and ~ denote the specific enthalpy, internal energy, and heat of 
vaporization; qjE is the heat-transfer rate of the j-th phase from the surface of the drop- 

let (j = i, 2). The subscripts 1 and 2 refer to the parameters of the gaseous and suspended 
phases; V and G refer to the parameters of the vapor and gas components of the host phase. 
The prime is used everywhere to signify perturbations of the parameters, and the subscript 
0 corresponds to the initial unperturbed state. 

We assume that the components of the gaseous phase are calorically ideal gases. The 
equations of state of the vapor, the gas mixture as a whole, and the incompressible disperse 
phase can then be written in the linearized form 

! ! t t 

P v / P v o  = P~:/9~'o + T~/To,  iv  : cpvT~, ( 2 . 2 )  

P;/P,o = P~'/P[o + r ; / r o  + R; /R ,o  = o = 
w h e r e  R a n d  T a r e  t h e  g a s  c o n s t a n t  and  t h e  t e m p e r a t u r e ,  and  CpV a n d  c 2 a r e  t h e  s p e c i f i c  

h e a t s  o f  t h e  v a p o r  ( a t  c o n s t a n t  p r e s s u r e )  a n d  t h e  d i s p e r s e  p h a s e .  We w i l l  d r o p  t h e  s u b -  
s c r i p t  0 f r o m  now on w h e r e v e r  t h e  m e a n i n g  i s  c l e a r .  

The s y s t e m  o f  e q u a t i o n s  ( 2 . 1 ) ,  ( 2 . 2 )  i s  c l o s e d  and  c a n  be  u s e d  t o  a n a l y z e  t h e  p r o p a g a -  
t i o n  o f  a c o u s t i c  d i s t u r b a n c e s  i n  m i x t u r e s  o f  an  i n e r t  g a s  w i t h  a v a p o r  and  l i q u i d  d r o p l e t s ,  
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provided the intensities of phase interaction f, JE, JVZ, and qjE (J = i, 2) are specified. 

The force interaction of the phases was determined by the standard technique with allowance 
for the fact that the main forces acting on an individual particle of the disperse phase 
are the Stokes and Basset forces [12]. The external and internal heat fluxes qiE and 

q2z of an inclusion toward its surface and the rate of interphase mass transfer JVE were 

given by the relations [Ii] 

qJx =2na%jNu~(T j - -Tx ) ,  N u j = 2 a ~ / ~  i, j = t ,  2, 

(l - -  kv)]yz = 2~ap~D1 Shl (kv - -  kyx), Shl = 2a~/D~.  

Here  Nuj and ~jT a r e  t h e  d i m e n s i o n l e s s  ( N u s s e l t  number)  and d i m e n s i o n e d  h e a t - t r a n s f e r  c o e f f i -  

c i e n t s  be tween  t h e  j - t h  p h a s e  and t h e  p h a s e  i n t e r f a c e ;  Sh 1 and ~l D a r e  t h e  d i m e n s i o n l e s s  

(Sherwood number)  and d i m e n s i o n e d  m a s s - t r a n s f e r  c o e f f i c i e n t s  be tween  t h e  h o s t  p h a s e  and 
t h e  s u r f a c e  (X) l a y e r  o f  t h e  d r o p l e t ;  k and D a r e  t h e  t h e r m a l  c o n d u c t i v i t y  and t h e  b i n a r y  
d i f f u s i o n  c o e f f i c i e n t ;  and k V = PV/Oz i s  t h e  v a p o r  c o n c e n t r a t i o n  in  t h e  g a s e o u s  p h a s e .  

We n o t e  t h a t  t h e  d e p e n d e n c e  o f  t h e  h e a t  f l u x e s  q jx  (J  = 1, 2) and t h e  m a s s - t r a n s f e r  

r a t e  JVZ on t h e  wave f r e q u e n c y  ~ mus t  be t a k e n  i n t o  a c c o u n t  in  t h e  i n v e s t i g a t i o n  o f  h i g h -  

f r e q u e n c y  i r r a d i a t i o n  o f  a gas  m i x t u r e  w i t h  p h a s e  t r a n s i t i o n s .  T h i s  can be done in  t h e  
t h r e e - t e m p e r a t u r e  model  o f  i n t e r p h a s e  h e a t  t r a n s f e r  f o r  t h e  a d o p t e d  p h a s e  t r a n s i t i o n  scheme 
by t a k i n g  i n t o  a c c o u n t  t h e  f r e q u e n c y  d e p e n d e n c e  o f  t h e  c o r r e s p o n d i n g  d i m e n s i o n l e s s  h e a t -  and 
m a s s - t r a n s f e r  c o e f f i c i e n t s  Nuj ( j  = 1, 2) and Sh z [8 ,  12] .  

I f  n o n e q u i l i b r i u m  p h a s e  t r a n s i t i o n  t a k e s  p l a c e  a t  t h e  p h a s e  i n t e r f a c e ,  t h e  v a p o r  p r e s -  
s u r e  PV2 a t  t h e  b o u n d a r y  d i f f e r s  f rom t h e  s a t u r a t e d  v a p o r  p r e s s u r e  P v s ( T z )  [ o r ,  e q u i v a l e n t l y ,  

t h e  t e m p e r a t u r e  T E o f  t h e  d r o p l e t  s u r f a c e  d i f f e r s  f rom t h e  s a t u r a t i o n  t e m p e r a t u r e  TS(PVZ)] .  

The r a t e  o f  n o n e q u i l i b r i u m  c o n d e n s a t i o n  a t  t h e  p h a s e  i n t e r f a c e  was s p e c i f i e d  by t h e  H e r t z -  
K n u d s e n - L a n g m u i r  e q u a t i o n  [11] 

t , ' 

where z~ is a characteristic equalization time of the partial vapor pressure at the phase 

interface (it depends on the accommodation coefficient B), C is the sound velocity, and 
y is the adiabatic index. The subscript S refers to the values of parameters on the phase 
equilibrium line. 

3. According to the dispersion relation [i0], for small mass contents of droplets 
(m = P2/Pl ~ i) the attenuation per wavelength o = 2~K**Cp/~, the linear attenuation coef- 

ficient K** (per unit length), and the phase velocity Cp of the waves are given by the 

expressions 

= n (Cp/Ca) 21 (~)t K** = (~/2Cl) (Cp/C1) I (~), 

C~ } --  t + Re {D O (~) + mV~ ~ I (~) = Im {D O (~) + m V ~ (0))} 

[ y ~  and D~  a r e  complex  f u n c t i o n s  d e s c r i b i n g  d i s p e r s i o n  and d i s s i p a t i o n  e f f e c t s  due 
to interphase friction and interphase heat and mass transfer, respectively]. 

It is difficult to obtain explicit expressions for o, K**, and Cp in general. We will 

therefore restrict the frequencies to ~v ~ i, when the influence of transient effects of 

phase interaction in an aerosol on wave dispersion and dissipation can be disregarded in it. 

We first consider the simpler special cases of single-component aerosols. For each 
case we can write explicit relations for the phase velocity and attenuation coefficients 
as a function of the frequency of the disturbance, the particle size, and the thermophysical 
properties of the phases. 

For a mixture of a gas with solid particles (k V = 0) the expressions for o, K**, and 

Cp have the familiar form [12] 

= ~I~(~), K** = (~/2C1) IG(~), C~/CI = I - -  Rec(o))/2, 
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O)Tv % (O'fT / 
I ~ ( c o ) = m  - -  + ( V , - - l )  : - -  2 "  

/ '  } Rea(o~) : m 1 + (m,v)~ + (7~-- 1) R 1 , 

0 2 

Tv  9 ~t I TT : Pec~a" § z 

Here T v is the relaxation time of the phase velocities in quasisteady (Stokes) flow' of the 

gas around the particles, D is the dynamic viscosity coefficient, and T T is a characteris- 

tic relaxation time of the temperatures between phases without phase transition on the sur- 
face of the droplet. 

In the case of a vapor containing droplets (k V = I), when mass transfer is a quasiequil- 

ibrium process (~ = 0), we can write the following expressions for the coefficients o, K**, 
and the velocity Cp:* 

t c~ } ~ ~ I~ (o~), - (3 .1)  \CI  ] --  i_l..Rev(CO ), 

I v (o)) = 11 mTT1 (o% O)~T2 
I "~ ((OTT1)2 ~- 12 + Ia t + ( ~ ) "  t + ( ~ , ~ ) '  ' 

Rev (co) = I~ 1 t t 
t + (o~r.r])z + L, ~- 13 ~' " ~ + ( o ~ )  2 1 + (,o~T~) 

( )~ ( Cl " c 2 ~ - c j  
L - - ( v , - t )  1 - -  F , 4 = ~ , & = m -  F ~ j = ~ , 7 =  z , 

i ~ a ~ t a 2 
TT1  3 0~2 ~1 TT2 15 X 2 

[~Tj  (J  = 1, 2)  i s  a c h a r a c t e r i s t i c  h e a t - t r a n s f e r  t i m e  b e t w e e n  t h e  j - t h  p h a s e  and  t:he d r o p -  
l e t  s u r f a c e ,  and  • i s  t h e  t h e r m a l  d i f f u s i v i t y ] .  

O r d i n a r i l y  c : / ~  2 << 1, so  t h a t  I a a n d ,  a c c o r d i n g l y ,  t h e  l a s t  t e r m  i n  R e v ( ~  ) i s  s m a l l .  

At f r e q u e n c i e s  ~ T  2 << 1 (w~ v g 1) t h e  l a s t  t e r m  i n  I v ( u  ) i s  a l s o  s m a l l .  C o n s e q u e n t l y ,  

t h e  i n f l u e n c e  o f  t e m p e r a t u r e  n o n u n i f o r m i t y  i n  t h e  i n t e r i o r  o f  t h e  d r o p l e t  on wave  d i s p e r s i o n  
and  d i s s i p a t i o n  i n  s i n g l e - c o m p o n e n t  a e r o s o l s  w i t h  p h a s e  t r a n s i t i o n s  c a n  be  d i s r e g a r d e d  a t  
t h e s e  f r e q u e n c i e s .  

I n  t h e  g e n e r a l  c a s e  o f  a t w o - c o m p o n e n t  a e r o s o l  w i t h  n o n e q u i l i b r i u m  m a s s  t r a n s f e r  ( ~  

0) t h e  e x p l i c i t  e x p r e s s i o n s  f o r  o ,  K**,  and  Cp h a v e  a c u m b e r s o m e  f o r m .  H o w e v e r ,  i n  t h e  

f r e q u e n c y  r a n g e  ~ v  ~ m << l ,  w h e r e  t h e  c o n t r i b u t i o n  o f  p h a s e  t r a n s i t i o n  e f f e c t s  t o  wave  
d i s p e r s i o n  and  d i s s i p a t i o n  i s  m o s t  p r o n o u n c e d  [ 9 ] ,  t h e s e  d e p e n d e n c e s  a r e  s i m p l i f i e d ~ ,  and  
t h e  f o l l o w i n g  e x p r e s s i o n s  can  be  u s e d  f o r  o ,  K**,  and  Cp: 

2c I \ C 1 ] t -t- Reg.(o)) ' 

I,,~ (co) = I ] m  ~o'%~ Re~ ((o) = I lm i 
l + ( ~ r ~ ) "  ' i + ( ~ r ~ )  + ' 

flrrl = ]~V('~!- l)V, ( 7 -  h T 1 ) ( ~ - -  b~l) 
v~Z-'k v + (~ - ~v h) b~ -'  

"v (nv_n~ ) ~o 
b =  R--I-' h = (t - -  r) + (t - -  kv) tr , r =  p-~z o. 

( 3 . 2 )  

tFor a vapor containing droplets the nonequilibrium of the phase interface in the presence 
of mass transfer asserts itself at rather high frequencies [9]: 
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Here ~m is a characteristic time of nonequilibrium interphase heat and mass transfer in the 

vapor-gas-droplet mixture at T x ~ TS; it is given by the relation 

y.72k Pr .+( l - -k , ,~  ~. Sc.+-7~ ~ ( 3 . 3 )  
3 T v | i V ~ x -/ i i or T v 

�9 m =  T m ~  y~T2kr+( l_k r  )bE t , O ~ m < < l ,  

in which Pr i and Sc I are the Prandtl and Schmidt numbers for the host phase. Normally Prl, 

Sc I ~ i, so that for ~6 = 0, according to Eq. (3.3), we have ~m ~ ~v/m, i.e., ~v m ~m" 

Note that Eq. (3.2) coincides with Eq. (3.1) at frequencies m~v ~ 1 in the case of a vapor 

containing droplets (k V = i), when ~6 = 0. 

According to Eqs. (3.2) and (3.3), the frequency dependence of the attenuation per 
wavelength o has a maximum at m~m ~ ~ I +f1~ �9 The frequency m at which o has an extremum 
associated with interphase heat and mass transfer depends on the thermophysical parameters 
of the mixture m, kv, ~, and 6 through ~m and Ilm. For small values of 6 (6 ~ I) allowance 

for the nonequilibrium of mass transfer (r 6 ~ O) can shift the extremum of the function o x 

(w) toward lower frequencies in connection with the increase in the time ~m" To estimate 

the maximum of o(w) associated with nonequilibrium interphase heat- and mass-transfer pro- 
cesses, we can use the approximate expression (the error of estimation does not exceed 3-5%) 

kv?l (?1 -- t ) (1 - - I~1)  ( [ - -  b~l) 
Gmax ~ 2 ?72kV+(l__kvh)~i ( 3 . 4 )  

Hence i t  f o l l o w s  t h a t  f o r  s u f f i c i e n t l y  s m a l l  mass c o n t e n t s  m o f  t h e  d i s p e r s e  p h a s e ,  such  
t h a t  t he  f u n c t i o n  o(w) has  e s s e n t i a l l y  o n l y  one extremum, s p e c i f i c a l l y  t h e  extremum a s s o c i -  
a t e d  w i t h  i n t e r p h a s e  h e a t  and mass t r a n s f e r ,  t h e  maximum v a l u e  of  t h e  c o e f f i c i e n t  o does  
n o t  depend on m or  6. An a n a l y s i s  shows t h a t  r e l a t i o n  ( 3 . 4 )  i s  v a l i d  w i t h  s u f f i c i e n t  a c c u r -  
acy  o v e r  t h e  e n t i r e  r a n g e  o f  v a p o r  c o n c e n t r a t i o n s  0 ~ k V ~ 1, and i t  can t h e r e f o r e  be used  

t o  i n v e s t i g a t e  t h e  f u n c t i o n  Omax(kV) o v e r  t h e  e n t i r e  r a n g e  o f  t h e  a rgumen t .  We n o t e  t h a t  

t h e  v a r i a t i o n  o f  k V i s  a s s o c i a t e d  w i t h  the  t e m p e r a t u r e  v a r i a t i o n  o f  t h e  g a s e o u s  phase  [T i = 

T s ( k v ) ] ,  making i t  d i f f i c u l t  t o  a n a l y z e  t h e  f u n c t i o n  Omax(k V) [ o r ,  e q u i v a l e n t l y ,  amax(Ti ) ]  , 

s i n c e  t h e  t h e r m o p h y s i c a l  p a r a m e t e r s  depend on t h e  t e m p e r a t u r e  [s  , c i ( T 1 )  , e t c . ] .  

The f u n c t i o n  Omax(ky) c a l c u l a t e d  by means o f  Eq. ( 3 . 4 )  f o r  a m i x t u r e  o f  a i r  w i t h  w a t e r  

vapor  and d r o p l e t s  i s  shown in  F i g .  1 f o r  v a r i o u s  i n i t i a l  p r e s s u r e s  in  t h e  g a s e o u s  phase :  
1) Pi = 0 . 1 M P a ;  2) 1 .0  MPa. The dashed  c u r v e s  i l l u s t r a t e  t h e  c a s e  R V = R G and can be used 
t o  a s s e s s  the  i n f l u e n c e  o f  d i f f e r e n c e s  in the  gas  c o n s t a n t s  o f  t h e  v a p o r  and gas  components  
on t h e  a t t e n u a t i o n .  C l e a r l y ,  f a i l u r e  t o  a c c o u n t  f o r  t he  d i f f e r e n c e  be tween R V and R G makes 

the attenuation coefficient o too high. This is attributable to the fact that the parameter 
h = 1 + (i - kV)(R V - RG)/R l reaches its minimum value of unity when R V = R G. The error 

incurred by ignoring the difference between R V and R G in the determination of Oma x is large 

in the range of moderate vapor concentrations and increases with the difference between R V 

and R G. It is evident from Fig. 1 that the functions Omax(k V) have an extremum at practi- 

cally the same vapor concentration k V ~ 0.i for the given pressures. Consequently, at 

pressures Pl = 0.i-i.0 MPa the wave attenuation in atmospheric fog due to diffusional mass 
transfer between phases of the mixture is a maximum at k V ~ 0.i. 

4. Experimental data on the propagation of low-intensity waves in aerosol fogs in 
the presence of phase transitions are the most interesting from the standpoint of testing 
the theory developed here. Just about the only paper on this subject, in which measurements 
of the attenuation of acoustic disturbances in atmospheric fog are reported, is [3]. In 
this work a Wilson cloud chamber was used to generate a monodisperse fog with a spatially 
homogeneous structure. The sizes and concentration of the droplets was determined by opti- 
cal methods. The experiments were carried out at a mass content of fog droplets m ~ 10 -2 , 
the wave frequency was 80 Hz, and the droplet diameter was varied from 2 ~m to i0 ~m. 

The objective of the experiments was to investigate the attenuation of harmonic dis- 
turbances in the range of dimensionless frequencies m~Tl ~ 1 (m~ m ~ i, m~v ~ m), where the 
influence of heat and mass transfer on the dissipation is a maximum. The dimensionless 
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frequency W~Tz was varied in the range ~0.5-16 by varying the size of the droplets. The 

experiments showed that the attenuation of a low-frequency disturbance in an aerosol with 
phase transitions can be an order of magnitude greater than the attenuation in a gas con- 
taining solid particles. The maximum attenuation per wavelength in an aerosol with mass 
transfer, in contrast with the gas of a gas suspension without phase transitions, is ob- 
served at ~TTI ~ 1 (w~ v ~ m ~ I). 

In Fig. 2 the theory is compared with the experimental data of Cole and Dobbins [3] 
on the attenuation per wavelength ~ = o/~ in a mixture of air with water vapor and droplets. 
This figure also illustrates the theory developed by the same authors in a previous paper 
[2]. The three groups of experimental points correspond to three experiments carried out 
for droplets with different diameters and mass concentrations and at different temperatures 
(different vapor concentrations in the gaseous phase: i) T o = 281 K, d = 4.36 ~m, n = 

1.71"i0 s cm -3, k V = 0.012; 2) 276 K, 1.84 pm, 1.52"106 cm -~, 0.008; 3) 271 K, 4.96 pm, 
7.74"104 cm -3, 0.006. Here d and n are the diameter and concentration of the droplets per 
unit volume. The scatter of the experimental data [3] is ~i0-15%. 

The analytical curves of ~(W~T1) are plotted by means of the dispersion relation [9] 

on the assumption that mass transfer is a quasiequilibrium process. For a vapor containing 
droplets with a frozen ($ = 0) or quasiequilibrium ($ = ~) phase transition the function 
o(w~ v) is self-similar and is suitable for particles of any diameter in the range of admis- 

sible diameters (w~ C ~ i, where T C is a characteristic time constant of waves whose wave- 

length is comparable with the distance between inclusions [ii]). This is also true in the 
general case of a vapor-gas-droplet mixture. In these extreme (with respect to $) cases 
the coefficient o depends on the droplet radius a only through the dimensionless combina- 
tions mrZz, wrli, wrl2, Wrd [9]: rpz, TXI, %12, rd ~ a~, i.e., o(~, r) = o(m a2). Moreover, 

as we showed in Sec. 3 above, in aerosols with small m ~ 10 -2 and quasiequilibrium phase 
transition at frequencies wrv ~ 1 the attenuation o depends on the mass content of the 

droplets only through the dimensionless time ~rm (rm ~ rTz ~ rv/m), i.e., o(m, r, m) : o • 

(w a2/m), m, w~ v ~ io We can therefore assume that the function o(WrTz) is approximately 

universal for suspensions with different droplet diameters and mass concentrations in the 
range of admissible values. This fact must be taken into account in analyzing the experi- 
mental data discussed here. 

The slight temperature variation from 271K to 281K that takes place in the experi- 
ments [3] at a constant initial pressure Pz = 0.i MPa did not actually affect the diffusion 
coefficients, the thermal conductivities, the specific heats, or the heats of vaporization. 
We note, however, that the vapor concentration k V in the gas mixture varied appreciably for 

the temperature variation. An analysis shows (see Fig. i) that when k V is small, the atten- 

uation coefficient o is directly proportional to k V. Consequently, the most important param- 

eter affecting the positions of the curves under the given experimental conditions (Fig. 2) 
is the vapor concentration k V in the host phase. Major difficulties were encountered in 

the precise determination of k V in the experiments, and so the authors of [3] postulated 

that the initial state is a thermodynamic equilibrium state: k V = kvs(T0). 
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It is instructive to investigate how the consistency of theory with experiment is 
influenced by taking into account the difference between the gas constants of the vapor 
and gas components of the host phase and by taking into account the nonequilibrium of inter- 
phase mass transfer. Some results of this investigation are shown in Figs. 2 and 3. The 
dashed curves in Fig. 2 represent the theoretical curves obtained in [2] on the assumption 
that R V = R G. The agreement between theory and experiment is imporved by allowing for the 
fact that R V ~ R G. Theoretical curves Corresponding to the three groups of experimental 

points were calculated on the assumption that $ = ~ (~ = 0) and are represented correspond- 

ing to the experiments [3] the results of these calculations for ~ = 0 are close to the 

results obtained by Davidson [7] within the framework of the simpler two-temperature quasi- 
equilibrium scheme of heat and mass transfer without regard for transient effects. 

The investigations showed that allowance for the nonequilibrium of phase transition 
in aerosol systems with small droplet mass contents m and low vapor concentrations k V can 

shift the o(~) curve well into the low-frequency range for sufficiently small values of 
the accommodation coefficient $ [9]. The size of the shift increases as $ decreases. This 
situation creates the hypothetical possibility of determining $ from the condition of opti- 
mum agreement between theory and the experimental data on sound attenuation in aerosols. 
Unfortunately, the large scatter of the existing experimental data [3] makes it difficult 
to determine 8 with any accuracy by this approach. 

In Fig. 3 the experimental data [3] are compared with the results of calculations based 
on the general nonequilibrium theory [9]. Theoretical curves corresponding to $ = 0.4 are 
plotted. A comparison of Figs. 2 and 3 leads to the conclusion that allowance for the non- 
equilibrium of phase transiton for the given parameters of the mixture has only a slight 
influence on the maximum value of the attenuation coefficient. However, the agreement of 
curves i and 3 with the corresponding groups of experimental points from [3] is improved 
somewhat by shifting the nonequilibrium theoretical curves toward lower frequencies. We 
note that the curves corresponding to $ = i differ slightly from the curves for $ = 0.4, 
but practically coincide with the curves calculated according to the quasiequilibrium scheme 
(~ = ~, ~$ = 0). Using the accommodation coefficient most often recommended for water, $ = 

0.04, somewhat diminishes the agreement of theory with experiment in contrast with ~ = 0.4 
for curves 2 and 3, but improves the agreement for curve I. On the whole, the experimental 
points are situated inside the region bounded by the curves calculated at the limit $ = 
and for $ = 0.04. 
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MODELING TWO-PHASE FLOWS WITH A PHASE INTERFACIAL SURFACE 

S. E. Ageev, V. T. Movchan, 
A. M. Mkhitaryan, and E. A. Shkvar 

UDC 532.5:533.6 

Many important problems for practice of the two-phase flow around bodies whose consti- 
tuents are air (gas) and water (liquid) can be solved, exactly as in the case of a homogen- 
eous medium, in a boundary-layer approximatoin that here retains the main structural criter- 
ia of a single-phase layer. However, depending on the phase mass relationships (on the 
degree of water content) important features appear whose crux is the formation and motion 
of a thin liquid layer over the streamlined surface. 

A large number of papers is devoted to the study of stratified flows in order to simu- 
late hydrodynamic processes being realized in different branches of engineering [1--5]. It 
should be noted that researchers turned the most attention mainly to the examination of 
two-phase flows with a laminar gas stream [2, 3] while the inhomogeneous structure of the 
phase separation boundary is not taken into account [4, 5] in the few papers devoted to 
two-phase flows with a turbulent boundary layer. 

It is shown in [6, 7] that the flow of a liquid film subjected to an air stream in 
a sufficiently broad range of values of the air speed and water mass flow rate in the film 
is two-parametric in nature and depends on the air Reynolds number Rex, 2 and on the water 

film Re I. It is found experimentally that the air-water phase interfacial surface is 
covered in all cases by a complex system of waves whose parameters are random in nature [6]. 
It is evident here that the air stream parameters influence the film motion while the nature 
of the liquid flow causes a change in the structure of the air medium. 

The mathematical description of the mentioned phenomena is fraught with a number of 
difficulties including the complexity of taking account of all the processes proceeding 
in the film and the air stream that results in the necessity to introduce separate assump- 
tions during execution of theoretical computations. 

A flow model in the approximation of gas stream incompressibility in the absence of 
heat and mass transfer turns out to be sufficient for the examination of a number of physi- 
cal processes. Such problems are encountered, say, in aviation engineering during determi- 
nation of the aerodynamic characteristics of streamlined structures in the presence of thin 
liquid films. 

A method and model of computing the combined flow of a water film with an air co-stream 
are proposed in this paper, which are based on the idea of merging the solutions of the 
air and liquid phase boundary layer equations. The conception of the model is configured 
in the representation of the laminar nature of the motion in the film and the turbulent 
nature in the air stream. The condition of continuity of the friction stress and velocity 
is posed at the boundary separating the two phases and its structure is assumed nonuniform. 
In the general case the flow is considered gradient and planar. 

The air stream characteristics are analyzed by numerical integration of the system 
of differential equations 
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